
telemetry

Apr 10, 2020

Table of Contents:

1 Installation 3

2 Basic Usage 5
2.1 Writing a Schema . 6

3 Indices and tables 9

i

ii

telemetry

Configurable event-logging for Jupyter applications and extensions.

Telemetry provides a configurable traitlets object, EventLog, for structured event-logging in Python. It leverages
Python’s standard logging library for filtering, handling, and recording events. All events are validated (using json-
schema) against registered JSON schemas.

If you’re looking for telemetry in Jupyter frontend applications (like JupyterLab), checkout the work happening in
jupyterlab-telemetry!

Table of Contents: 1

https://github.com/jupyterlab/jupyterlab-telemetry

telemetry

2 Table of Contents:

CHAPTER 1

Installation

Jupyter’s Telemetry library can be installed from PyPI.

3

telemetry

4 Chapter 1. Installation

CHAPTER 2

Basic Usage

Here’s a basic example of an EventLog.

import logging
from jupyter_telemetry import EventLog

eventlog = EventLog(
Use logging handlers to route where events
should be record.
handlers=[

logging.FileHandler('events.log')
],
List schemas of events that should be recorded.
allowed_schemas=[

'uri.to.event.schema'
]

)

EventLog has two configurable traits:

• handlers: a list of Python’s logging handlers.

• allowed_schemas: a list of event schemas to record.

Event schemas must be registered with the EventLog for events to be recorded. An event schema looks something
like:

{
"$id": "url.to.event.schema",
"title": "My Event",
"description": "All events must have a name property.",
"type": "object",
"properties": {

"name": {
"title": "Name",
"description": "Name of event",

(continues on next page)

5

telemetry

(continued from previous page)

"type": "string"
}

},
"required": ["name"],
"version": 1

}

Two fields are required:

• $id: a valid URI to identify the schema (and possibly fetch it from a remote address).

• version: the version of the schema.

The other fields follow standard JSON schema structure.

Schemas can be registered from a Python dict object, a file, or a URL. This example loads the above example schema
from file.

Record an example event.
event = {'name': 'example event'}
eventlog.record_event(

schema_id='url.to.event.schema',
version=1,
event=event

)

2.1 Writing a Schema

Schemas should follow valid JSON schema. These schemas can be written in valid YAML or JSON.

At a minimum, valid schemas should have the following keys:

• $id : a valid URL where the schema lives.

• version : schema version.

• title : name of the schema

• description : documentation for the schema

• properties : attributes of the event being emitted.

Each property should have the following attributes:

– title : name of the property

– description: documentation for this property.

– pii: (optional) boolean for whether this property is personally identifiable information or not.

• required: list of required properties.

Here is a minimal example of a valid JSON schema for an event.

$id: url.to.event.schema
version: 1
title: My Event
description: |

All events must have a name property
type: object

(continues on next page)

6 Chapter 2. Basic Usage

https://json-schema.org/

telemetry

(continued from previous page)

properties:
name:
title: Name
description: |

Name of event
type: string

required:
- name

2.1. Writing a Schema 7

telemetry

8 Chapter 2. Basic Usage

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

9

	Installation
	Basic Usage
	Writing a Schema

	Indices and tables

